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Space Shuttle Primary Onboard Software:
STS-1 to Operational Use

A.J. Macina*
International Business Machines Corporation, Houston, Texas

The Shuttle primary onboard software and associated computer hardware comprise a data processing complex
responsible for virtually all intersystem data flow and vehicle external interfaces. Onboard functions related to
guidance, navigation, flight control, systems monitoring, and management, as well as vehicle/crew/ground
interfaces, are handled by this primary system. The organization that prepared the software for the Shuttle
orbital flight tests emphasized a disciplined design and development phase coupled with a thorough independent
verification activity. Current focus is centered orn tailoring the software organization, test philosophy, and
maintenance and test facilities to the high flight frequencies and diverse missions expected during the Shuttle

operational era.

Shuttle Software Overview

HE successful completion of the first orbital flight of the

Shuttle (STS-1) in April of 1981 marked the culmination
of one of the most complex software development and in-
tegration activities ever undertaken. The evolution of the
Shuttle’s data processing system (DPS) has spanned more
than eight years. Along with the orbital flight tests, the
development program also included the approach and land-
ing test (ALT) project during which a Shuttle vehicle was
launched from a Boeing 747 aircraft and performed the
terminal approach and landing portions of the Shuttle
mission. Five such ALT flights were performed during August
through October of 1977 providing an early test bed for both
the DPS hardware and basic software architecture that would
eventually be used for the orbital test missions.

With respect to size and complexity, the software for the
first orbital flight test of the Shuttle involved eight separately
executable programs or memory configurations sharing a
common operating system (see Fig. 1). These programs were
stored on a mass memory tape device and were loaded into the
onboard computers on crew request. One of the eight per-
formed all functions necessary to the launch, ascent, and orbit
insertion phases of the mission. Two others provided software
to be used during on-orbit operations and included both
navigation and control functions as well as system monitoring
and management functions. Another memory configuration
performed all functions necessary to the de-orbit, entry, and
landing mission phases. The remaining four were designed to
perform critical prelaunch and on-orbit vehicle checkout
procedures. In all, these eight programs, including the soft-
ware operating system, comprised approximately one-half
million 32-bit words of data and executable instructions. All
Shuttle applications software modules and a large part of the
operating system included in these memory configurations
were implemented in the HAL/S high-order language. The
language and associated compiler, specifically developed for
aerospace applications, are scientifically oriented and
especially suited to real-time systems.

The criticality of the software to the Shuttle is emphasized
by its numerous interfaces with other vehicle subsystems.
There are few functions integral to the Shuttle operation for
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which the software does not perform some type of com-
putational service. Specifically, the onboard software is
responsible for the guidance, navigation, and flight control
functions performed during all flight phases. This includes
both the gathering of environment and sensor input data and
the issuing of commands to the vehicle effectors (engines,
aerosurfaces, etc.). The software also handles all
vehicle/ground interface functions prelaunch through landing
via a direct launch data bus (ground) or telemetry (in flight).
In addition, it provides many crew/subsystem interfaces.
Other software functions include the management and
monitoring of onboard systems, fault detection and an-
nunciation, preflight and pre-entry checkout, and safing
procedures.

The number and size of the services performed by the
onboard software are not the only factors contributing to its
complexity. The requirement for redundancy to achieve
reliability has also been a factor. To obtain the required “‘fail-
operational/fail-safe’’ reliability, the software in certain
critical flight phases must execute redundantly in multiple
computers. For example, during the STS-1 mission the
software for the-ascent and entry phases executed redundantly
in four of the five IBM System/4 II Model AP-101 general
purpose computers (GPCs), the fifth computer being reserved
for the backup flight system (BFS). To achieve this redun-
dancy, an intercomputer synchronization scheme which
guarantees identical inputs and outputs from the redundant
computers had to be developed. The software needed to
support this redundancy requirement is an integral part of the
operating system architecture. It provides such functions as
computer synchronization at rates in excess of 300 times per
second and control of input data to assure that all computers
receive identical information from redundant sensors whether
or not hardware failures have occurred.

The delivery of the software for the STS-1 and STS-2
missions saw the completion of an onboard system capable of
supporting a majority of the basic Shuttle functions. Software
development activities from there forward were reduced and
restricted to the areas of payload support and handling, and
enhancement of on-orbit maneuvering and rendezvous
capabilities.

Primary Flight Software Architecture
The main memory capacity of the AP-101 computer (106K,
32-bit words) precludes all eight operational programs (OPS)
from being resident at one time. As depicted in Fig. 1, OPS
are, in general, associated with specific mission phases in
order that computer main memory overlays are avoided
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FLIGHT COMPUTER OPERATING SYSTEM
Fig.2 Software architecture. The Flight Computer Operating System uses a

during critical portions of the flight. Each of the eight OPS or
memory configurations consist of two basic parts: the system
software, which is resident and identical in all eight OPS, and
the applications software (see Fig. 2). For transitions between
OPS, the system software remains unaltered, while the ap-
plications software, depending on the transmon requested,
may be partially or totally overlaid.

System Software

Major elements of the system software include the
management and control of the flight computer’s internal
resources and external interfaces. This function is performed
by the Flight Computer Operating System (FCOS). A second
element, system control (SC), provides software initialization
and software/hardware reconfiguration (memory overlays,
data bus switching, etc.). A third function, user interface
(UI), handles all communications between the software and
its various ground and onboard users.

multitasking/priority queue structure. It .schedules and-
allocates central processing unit (CPU) resources in response
to requests from applications software or external sub-
systems. These resource requests are made through standard
supervisor calls (SVCs) embedded in the applications code,
timer-initiated interrupts for cyclically required functions, or
externally driven interrupts signaling incoming data from
other subsystems. In servicing these various interrupts and
SVCs, the process management function assures that the
highest priority process with work to perform is given control
of the CPU.

The FCOS function also manages all input and output, as
well as the interface between the two physical units that
comprise each computer; that is, the CPU and the input/out-
put processor or {OP. Although considered a part of the
general purpose computer, the IOP is actually an array of 24
separate processors each controlling the [/0 traffic on one of
the 24 data buses connecting each computer to various ground
and onboard systems (see Fig. 3).

Probably the most unique function of the FCOS software is
the synchronization of redundant computers during critical
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flight phases.! As mentioned, this synchronization occurs
over 300 times per second. It is accomplished by “‘stop-
points’’ embedded in both the system software and the ap-
plications. Upon reaching one of these ¢‘stop-points,’” a given
computer will cease normal execution of programs and at-
tempt to determine if all other computers in the set have
reached the identical point. To make their determination,
each computer receives synchronization information via
dedicated discrete lines from all other computers. A given
member of the set will wait only 4 ms for all other members to
reach the ‘‘stop-point.”” Computers not arriving within the
time limit are considered failed and are removed from the
redundant set. Removal involves termination of all in-
tercomputer communication with the offending member
along with annunciation of the ‘“failure-to-sync’’ to both crew
and ground controllers. Actual power-down of a faulty
computer is a manual function performed only by the crew.

System Control (SC)

Computer initialization, reconfiguration and control of the
data processing system hardware and data bus network is
performed by the SC software. Initial program loads (IPLs),
program overlays from the mass memory unit, and data bus
switching are examples of the services provided.

User Interface (UI)

Support of the four crew (CRT) display units is provided by
the UI software. These units and associated input keyboards
comprise the primary interface between the crew and various
software functions and hardware subsystems. In all, more
than 60 different display formats are available on request
throughout the eight operational programs. In addition to the
CRT displays, the Ul software also controls vehicle-to-ground
interfaces. These are: the launch data bus (LDB), a direct
channel between the onboard computer and the launch
processing system at the Kennedy Space Center, and the
network signal processor (NSP), an onboard device connected
to the computer via the bus network, which receives com-
mands and data from the Mission Control Center at the
Johnson Space Center in Houston.

Applications Software

The Shuttle onboard software has been developed to
support three primary preflight and in-flight applications.
The first, guidance, navigation, and flight control, determines

vehicle position, velocity, and attitude, performs subsystem’

redundancy management, and provides the crew with the
displays and data entries necessary to control the avionics
system. This software also issues all engine and aerodynamic
surface commands from lift-off through rollout. GN&C
software is resident in five of the eight OPS programs of Fig.
1.

The second major application, systems management (SM),
monitors the performance and configuration of orbiter
subsystems. It provides fault detection and annunciation of
anomalies to both crew and ground. Other functions planned
for later flights include payload deployment and retrieval
operations. For early flights the SM software will be resident
in two of the eight OPS of Fig. 1. In later flights, this software
will be confined to on-orbit operations.

The final application, vehicle checkout (VCO), provides
support for the testing, integration, and certification of
Shuttle subsystems during vehicle preparation, prelaunch
countdown, and during the orbit coast period just prior to
entry. VCO software is contained in three of the OPS
programs and is co-resident with both GN&C and SM ap-
plications.

STS-1 Software Development and Verification
Goals and Objectives

The organization responsible for the development and test
of the Shuttle software evolved from previous space software
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development programs including Apollo and Skylab. The
most beneficial experience, however, was gained during the
approach and landing test (ALT) program. Although this
system was considerably smaller and the flight environment
benign in comparison to the STS-1 mission, valuable software
design, test, and managerial experience directly applicable to
the STS-1 activity was gained. ‘

The primary objectives of the STS-1 software organization
can be summarized in three key points. The first and most
obvious is to: .

1) Develop software which adheres to the letter of the
customer’s requirements. This refers to formal requirements
documentation.

2) Assure that the software performs in accordance with
the customer’s operational expectations for both nominal and
off-nominal conditions. This refers to operational
requirements explicitly or implicitly identified in crew
procedures, operational mission profilps, etc.

3) To provide software which is “‘error-free.’’

The first two goals are easily quantifiable since specific test
scenarios can be developed to cover all documented software
requirements and one-to-one mapping maintained and
reported. The third goal of producing error-free software is a
more nebulous objective when applied to complex systems
and, as experience has shown, can only be asymptotically
approached. How well a software development and test
organization does in achieving this goal depends on how
effectively it is structured to address the following areas:

1) Early identification and application of programming
standards and techniques with subsequent checks on the
fidelity with which these have been followed.

2) Establishment of a comprehensive test plan driven by
customer requirements and operational usage.

3) Establishment of tests, audits, and code inspections not
specifically driven by customer requirements but necessary to
prove the design error-free. .

4) Early definition of requirements for the simulation test
bed(s) and other support software accompanied by a thorough
test plan and subsequent configuration control.

S) Configuration control of the incremental build and
integration of the evolving software system.

6) Configuration control of the implementation and retest
of the software changes resulting from requirements upgrades
and discrepancy corrections.

Organizational Structure

The organization chosen to address each of these key items
is divided into five functional areas: requirements analysis
and system architecture, software development, system in-
tegration and build, independent verification, and customer
support and field test. Each represents a line department
although all are not equal in size or position within the
organizational hierarchy.

Software Design, Development, and Integration

The first three functions found in most software
organizations are responsible for the design, implementation,
integration, and module-through-system-level test of the
software. The requirements analysis group, a ‘‘front-end”’
organization oriented toward applications software, is made
up of engineers and programming specialists familiar with
avionics systems. Their participation started with involvement
in the early formulation of the software requirements by
NASA and the prime contractor, Rockwell International.
Their role was to assess the feasibility of implementing the
requirements into the data processing hardware and software.
A second objective was to gain an in-depth understanding of
the chosen avionics design to guide their subsequent system-
level software design activities. This understanding of both
the avionics design and the software structure also proved
invaluable to requirements analysts in their later role as
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advisors to the programmers implementing the detailed
software design.

The system architecture organization performs a role
similar to the requirements analysis group with their efforts
primarily directed toward the operating system software. In
addition, their responsibilities included the sizing and
measurement of the evolving software package (CPU
utilization, memory size, and timing measurements).

Shuttle software development is divided into two major
organizations-—one responsible for the operating system and
associated user interface software, and the second responsible
for the ‘‘applications’’ software (e.g., navigation software,
flight control software, etc.). These organizations, assisted by
the requirements analysts and system architecture personnel,
design and code the software at the module or subroutine
level. They also perform initial integration by coupling in-
dividual modules with an executive structure to produce
overall subsystems such as the guidance, navigation, and
flight control software. Testing is performed at each level of
development from the module level using driver programs,
through the initial integration level.

The final integration of applications programs with the
operating system is performed by the system integration
group. It is the responsibility of this group to collect new or
updated software modules from the development
organizations, compile or assemble them, and use the
resulting object code to update a master software system
library. This master system is then link-edited and passed
through a mass memory build program which converts it to a
form that can be used to load a Shuttle onboard mass memory
tape unit. The combined integration and development
organizations perform additional system level tests after the
final systems have been built. These include nominal flight
simulations in a multicomputer environment as well as
hardware/software interface tests.

As a part of their development and integration respon-
sibilities, these three organizations define, apply, and enforce
programming standards. Both during the design phase and
after implementation into code, formal inspections assure
that the software adheres to all baselined programming
standards. The development and integration groups also
maintain configuration control during all levels of design,
coding, integration, and testing. This control pertains not
only to the software package but also associated documen-
tation such as requirements baselines, design descriptions,

discrepancy tracking, and integration and system build -

documentation.

Independent Verification

Independent verification is a separate line organization with
the ultimate responsibility of assuring that the software is
error-free. The verification group maintains an equal status
with the software development organization, and derives its
authority by remaining completely independent with respect
to management and personnel.??

The philosophy of the verification group is based on the
premise that the software is untested when received. This is a
key factor in the development of their test plan. Because their
role is essentially that of a pseudocustomer, they maintain an
adversary relationship with the - development groups.
Verification receives the software at the end of the design,
development, and integration cycle and subsequently subjects
it to a complete detailed and system level validation program.

Verification testing is divided into two major categories:
detail/functional testing and performance or system-level
testing. The detail/functional tests address the question of
whether the software meets the letter of the requirements and
is basically divided by functional area (e.g., ascent guidance
programs, entry navigation, etc.). Performance or system
testing is directed at how the system as a whole will perform in
both nominal and off-nominal or stress situations.* As a
result, the performance verification is divided by mission
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phase; that is, ascent/aborts, on-orbit, entry. The majority of
verification testing is performed in the Software Development
Laboratory (SDL) using actual Shuttle data processing system
hardware. A small amount of verification testing is per-
formed in other facilities, such as the Shuttle Mission
Simulator (SMS) and Shuttle Avionics Integration
Laboratory (SAIL), in order to take advantage of their exten-
sive flight hardware and crew interfaces. Descriptions of these
test facilities are provided later. A prime objective in both
types of verification is to perform all testing on the total
unaltered (or ‘“unscarred’’) software system rather than a
modified or partial system.

Execution of test cases is only one aspect of the respon-
sibilities of the verification analyst. Associated with each test
case is a standardized checklist that must be filled out before
the test case is considered completed. One item on this
checklist is the code inspection of all software modules
covered by the case. This ‘‘mental walk’ through the soft-
ware has proven to be especially fruitful in uncovering par-
ticularly subtle discrepancies.

Verification’s organizational independence and its
assumption that the software is untested when received have
both been emphasized earlier. In addition, two other attitudes
play a key role in the verification group’s approach to testing.
Since verifiers are considered systems analysts and not just
‘“‘testers,”’ they are responsible for attempting to diagnose
problems and propose solutions when possible. This expedites
software development’s analysis and correction of alleged
software discrepancies. This responsibility, however, is
tempered by the overriding directive that *‘...when in
doubt—assume the software to be at fault.”’ This is the key to
providing error-free software. A second attitude addresses the
requirements and can be simply stated as ‘‘...the requirements
are not to be considered infallible.”” These attitudes and
assumptions cast verification in the role of the conscience of
the project and foster a definite but healthy adversary
relationship between the verification group and the software
development organizations.

Customer Support and Field Test

The customer support and field test activity occurs in
parallel with verification. This organization provides a
number of services to software users at customer test sites
(simulators) and on the actual Shuttle vehicle. These include
installation and checkout of the newly released software;
problem analysis, trouble-shooting, and implementation of
temporary solutions; customer education and customer/
software organization liaison; test site unique software
alterations; customer test program support; crew training
program support; and mission support.

Software Development and Test Life Cycle

Figure 4 describes the typical software development life
cycle and depicts the interaction of the five functional areas
listed above. For STS-1, the cycle started in 1974.

Due to the size, complexity, and evolutionary nature of
both the requirements and design of the software, it was
recognized early that the ideal development cycle could not be
strictly applied and still satisfy overall program objectives and
customer needs. Due to schedule constraints, the ultimate
users of the software could not wait for the complete package
to be developed, verified, and delivered. Since the software
was such an integral part of the overall system, checkout of
customer test simulators and crew trainers, and more im-
portant, the buildup of the actual Shuttle orbiter could not
begin without it.

A system release approach was devised for STS-1, which
met the objectives by applying the ideal cycle to small
elements of the overall software package on an iterative basis.
This approach was based on incremental releases. The releases
were first separated into flight phases or memory con-
figurations; that is, entry, ascent, and vehicle checkout. The
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first drop for each release represented a basic set of
operational software and provided a structure for adding
other capabilities on later deliveries. The development of the
full set of baseline capabilities for each release culminated at a
first-article configuration inspection (FACI) point which
marked the beginning of the independent verification effort
for that release.

The advantages to the customer are obvious, but this ap-
proach also provided certain advantages to the software
organization. It fostered a gradual development and test
approach, exposing the software in small increments to both
verification and field users. This allowed early identification
of software discrepancies and eased problem isolation so
often difficult in large fully integrated systems. The in-
cremental approach also exposed the software and data
processing system to actual flight hardware at a much earlier
point in the program.

The STS-1 development program had 24 interim releases of
the software in the period October 1977 to the STS-1 flight in
April 1981 (see Fig. 5). Although full software capability to

support the first flight was provided after the ninth release in
December 1978, additional releases of the software were
necessary to accommodate the continued requirements
changes and discrepancy correction activity inherent in large,
complex, first-of-a-kind software systems.

An Integrated Test Approach

The key to the success of the incremental release technique
was a method for project-wide control of all testing, an in-
tegrated test approach. The verification group was not the
only organization involved in testing. Both the development
and integration groups tested the software during the in-
cremental buildup of capabilities. This testing proceeded in
paralle! with verification of earlier releases. In order to insure
total coverage and consistency across the project, test
execution and documentation standards were implemented.
These included review and approval procedures involving
both IBM and NASA.

A key element of this integrated test plan was development
of a management approach which emphasized a hierarchical
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ordering of development tests that allowed for continual
integration of program parts as they were developed, and a
systematic sequence of evaluation tests on the parts as well as
the flight software system as a whole (see Fig. 6).

During the development period, compilation units were
added to the master system via the system build process which
was invoked periodically. Each master system update was
tested to determine the preservation of the software’s basic
capabilities. Also, more detailed level tests were used to
determine the quality of newly added capabilities. The former
testing was termed ‘‘regression testing,”’ the latter ‘‘new
capabilities testing.”” All specific test plans were documented
in an integrated test plan which covered all phases of the
testing process. Seven unique phases or levels of testing,
described in the following paragraphs, were performed on the
various interim software releases using the Software
Development Laboratory (SDL).

Level 1 Testing (Unit)

During the development activity, specific testing was done
to insure that the mathematical equations and logic paths
provided the results expected. These algorithms and logic
paths were checked for accuracy and, where possible, com-
pared against results from external sources and against the
system design specification (SDS).

Level 2 Testing (Functional)

The level 2 facet of the development testing was similar to
level 1. However, level 1 testing described above was ex-
panded to modules that interfaced with each other in the total
functional environment and were required to satisfy a specific
user input command. It combined modules which, by design,
operated in conjunction with each other and tested them as a
function against the SDS and the requirements.

Level 3 Testing (Subsystem)

Level 3 testing demonstrated the ability of a subsystem to
execute nominally in a simplex flight computer environment
(e.g., fly an ascent trajectory, or perform self-test of the
vehicle hardware). These tests were the first real indicators of
the software performance as an integrated system. All facets
of the applications programs, from the integrity of the
algorithms to its interface with the system software, were
exercised. Completion of level 3 tests was one of the key
milestones in the path to releasing a system for verification
and field usage.

Level 4 Testing (System)

Level 4 testing, performed by the software integration
group, exercised control logic interfaces, operational program
(OPS) transitions, and display processing in a multiple-flight
computer environment. This was the phase during which the
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first onboard mass memory image containing all eight
operational flight programs (see Fig. 1) was integrated and
tested.

Level 5 Testing (Release Validation)

Prior to delivering the software to field users, the level 4
tested end item was loaded into an actual Shuttle hardware
mass memory and tested in one of the NASA
simulation/training facilities. This was to verify that the
delivered software would function in the most realistic
hardware environment available.

Levels 6 and 7 Testing (Independent Verification)

Levels 6 and 7 refer to testing performed by the independent
verification group. Level 6 tests encompass all of the testing
performed by verification, and level 7 is that subset, defined
by mutual IBM/NASA agreement, as the software acceptance
tests to be presented to the general Shuttle community at
configuration inspection (CI). Both test plans and results were
subject to NASA review and approval. As previously men-
tioned, verification constitutes a complete retest of all soft-
ware capabilities at both the detailed and system levels. No
assumptions were made about the quality or correctness of the
software based on testing performed in levels 1-5.

Description of Test Facilities

Shuttle program test requirements necessitate use of three
facilities for verification of the Shuttle avionics system: the
Software Development Laboratory (SDL), the Shuttle
Avionics Integration Laboratory (SAIL), and the Flight
Systems Laboratory (FSL). A fourth facility, the Shuttle
Mission Simulator (SMS), although not specifically involved
in testing the avionics system, does play a major role in
exercising the integrated avionics design through its extensive
crew training activities.

The Software Development Laboratory (SDL), located in

“Houston at the Johnson Space Center, is the primary facility

for the development, integration, and verification of the
primary onboard software system. It was developed and is
maintained by IBM, the software contractor, under contract
to NASA. Its capabilities will be discussed later in this section.

The Shuttle Avionics Integration Laboratory (SAIL), also
located at the Johnson Space Center in Houston, is
responsible for avionics system integration and hard-
ware/software certification. It is primarily used by NASA
and Rockwell International, the Shuttle integration con-
tractor, to support elements of their avionics verification
plan. The SAIL was designed as a simulation laboratory
where avionics hardware (or simulations of the hardware),
flight software, flight procedures, and ground systems are
fully integrated and tested. Its integration and test role for
STS-1 emphasized the prelaunch, ascent, aborts, and orbit
insertion phases of the Shuttle mission.

The Flight Systems Laboratory (FSL), located at the
Rockwell facility in Downey, California, has capabilities
similar to those of the SAIL. Its role in the Shuttle program is
also similar in that it is used by NASA and Rockwell to
perform avionics system integration and verification for the
on-orbit, de-orbit, entry, and landing phases of the mission.
Both the FSL and SAIL are full six-degree-of-freedom flight
simulators with man-in-the-loop capability.

The Shuttle Mission Simulator (SMS) is NASA’s primary
training facility for Shuttle crews. Located at the Johnson
Space Center in Houston, it provides a realistic environment
for training crews in all mission phases from prelaunch
through landing and rollout. The SMS consists of two
simulators, both employing actual Shuttle data processing
system hardware. One, the ‘‘moving-base’ simulator,
provides cockpit motion consistent with vehicle dynamics; the
second is a ‘‘fixed-base’” simulator. Both provide extensive
visual displays in addition to a direct link to the Mission
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Control Center, also in Houston. Although not directly in-
volved in software testing, the SMS does provide an in-
valuable benefit in this area. Its extensive program of crew
training under off-nominal conditions tends to subject the
software to a wide variety of stress situations. This provides
added confidence in the performance and capabilities of the
system.

The SDL Facility—The Software Test Bed

The SDL serves a dual role in the Shuttle test program. The
Primary Avionics Software System is both developed and
verified in the SDL. Because of this dual role, the laboratory
has been designed with capabilities to analyze, verify,
maintain, and control Shuttle flight software. Additionally,
the SDL is used to integrate all software elements into an
orbiter-compatible tape used to load the Shuttle mass memory
tape unit.

The SDL provides six major functions with which to
perform development, verification, and integration activities.
These functions are a program management facility; a mass
memory build facility; a simulator; a postprocessor; a
documentation, analysis, and statistics system; and an array
of preprocessors.

The Program Management Facility (PMF) provides the
programs and control needed to build, maintain, and track
program data and create deliverable systems. The mass
memory build facility provides the utilities by which Shuttle
software elements are mapped into the format required by the
orbiter’s mass memory units. The mass memory build also
creates universal patch format (UPF) tapes used by all Shuttle
test sites to update onboard mass memory units.

The preprocessors provided by the SDL convert data
required for flight into forms that can be used by the flight
software. These data include mission-dependent initialization
data (I-Loads), display formats, systems-management
measurement tolerances, and downlist telemetry data.

The documentation, analysis, and statistics system provides
users with the data necessary to develop, analyze, and
maintain the evolving software system.

The SDL simulator and postprocessor functions provide the
primary facility used in the development and verification tests
of the software system. It provides a realistic closed-loop, six-
degree-of-freedom simulation of the Shuttle operational
environment and avionics hardware. Available Shuttle
hardware elements include multiple AP-101 general purpose
flight computers along with their associated input/output
processors, and the crew display electronics units (DEUs) and
CRTs. All flight hardware is interfaced via a special-purpose
flight equipment interface device (FEID). This device not only
provides the hardware-to-hardware and hardware-to-host
computer interface, but also the means by which the
simulation is monitored and controlled.

The FEID allows the user to control simulation execution at
the flight software instruction or data location level. Users
have the capability to ‘‘stop’> a multiflight computer
simulation on time, event, or upon execution of a particular
instruction or data location reference within the flight soft-
ware. While the simulation is stopped, capabilities are
available via direct memory access to alter or collect data
from the flight computer main memory. Since the simulator is
also stopped during this period, faults may also be introduced
external to the flight computer in the simulated hardware or
vehicle environment. Upon completion of the faulting or data
collection activity, the simulation can be restarted without
loss of continuity in instruction execution or I/0. This ability
to stop on any user-specified software instruction and access
or alter the contents of the flight computer without affecting
the simulation is a unique feature of the SDL and is not
available in the SMS, FSL, or SAIL simulators.

The major outputs of the simulator are log tapes, which
contain the flight software commands issued and the data
received or transmitted. The log tapes also contain diagnostic
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data such as data snaps, dumps, or traces requested by the
user. The SDL postprocessor provides a data reduction and
manipulation capability for the log tapes. Postprocessor
capabilities allow users to specify the subset of logged data to
be processed, its format, special computations that are
required, and whether a comparison should be made with
other simulations.

Shuttle Operational Environment

Software for the early STS missions has emphasized
development of new capabilities. The software organization
was one geared toward basic design development and
verification of an untried system. Test facilities have been
tailored to be flexible with generalized diagnostic features,
provisions for extensive user intervention, and emphasis on
the hardware/software interfaces. Early test philosophies
have emphasized painstaking thoroughness to the point of
being redundant. Design and code reviews, detailed testing,
system level testing, followed by complete reverification by an
independent organization have all been necessary to assure
crew safety and mission success for the early flights. These
initial tools and techniques, however, will not be cost effective
or responsive enough to meet the demands posed by the
Shuttle flight manifest in the operational era.

Shuttle Flight Manifest

The current flight manifest highlights two factors over the
next five years—increased mission frequency and varied
mission objectives and payloads. The typical Shuttle flight
will last from 1 to 7 days in near-Earth orbit. Upon return the
orbiters and boosters will be refurbished and refitted. For the
orbiter, the procedure is projected to take less than 30 days.
Recent estimates predict 12 flights in 1984, with the number
per year increasing to as many as 30 as the Shuttle becomes
fully operational.

The basic software architecture and applications programs
to support the majority of defined missions will have been
developed and verified with the completion of the tenth
mission. Although the intent is to have the software remain
nearly constant after that point, in reality it will continue to
change throughout the operational era. Changes will be the
result of three activities: 1) continued development of new or
enhanced capabilities; 2) maintenance (i.e., correction of
discrepancies); and 3) mission reconfiguration.

Although software requirements are still being refined in
some applications areas, development of new or enhanced
capabilities is expected to dramatically decrease as the
operational era is approached. Likewise, as the software
stabilizes and attains a certain level of ‘‘shelf-life,”’ changes
resulting from discrepancies in requirements, design, or
implementation will also decrease. Even though development
and maintenance activity is expected to be minimal in the
operational era, significant software data alterations are
planned from flight to flight. These data changes are termed
“‘reconfiguration.”’

Flight-to-Flight Reconfiguration

Since it was not feasible to design a self-contained, un-
changing software system to meet the needs of all projected
Shuttle missions and payloads, certain areas of the software
were generalized and made easily changeable with only
minimal impact to the integrity of the overall system. If one
divides the software into three basic categories: logic (code
and algorithms), constant data (unchanging values such as the
value of ), and mission reconfiguration data; the logic and
constant data comprise that part of the software which is
intended to remain unchanged in the operational era. Mission
data, however, will be used to “‘reconfigure’’ the software for
particular missions and payloads.
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Origin of Mission Reconfiguration Data

Flight-to-flight reconfiguration data, which are parameter
values rather than code or logic, arise from three sources:
variations in mission profiles; changes in vehicles or vehicle
configuration; and variations in payloads or payload carriers.

Reconfigurable mission profile data include such
parameters as launch site characteristics, ascent and abort
trajectories and targets, orbit profiles, entry targets, landing
site characteristics, and, in general, all data required by the
guidance, navigation, and flight control system which can
vary from mission to mission.

Since nearly all information paths within the Shuttle are at
some point handled by the data processing system, the flight
software is designed to be reconfigured with data describing
the precise configuration of the particular orbiter utilized.
Such vehicle data include data bus network addressing in-
formation for various line-replaceable units (LRUs) and
sensor calibration information (e.g., inertial measurement
unit factory calibration data, accelerometer scalings and
biases, etc.). Other vehicle-dependent data include mass
properties and engine characteristics. Although the intent is to
maintain commonality among all Shuttle vehicles, some
variation will be a reality in the operational era and has been
provided for within the definition of ‘‘reconfigurable’’ data.

Payloads and payload carriers can have a wide-ranging
influence on reconfiguration of the software. Inactive or
autonomous payloads may only affect such data as vehicle
mass properties or remote manipulator arm deployment or
retrieval sequences, whereas more complex payloads and
carriers may require any or all of the following: specialized
telemetry downlink data; unique fault detection and an-
nunciation; and specialized payload/carrier crew display
formats and data entry and control capabilities.

Software Implementation of Reconfiguration Data

Implementation of mission-reconfigurable data has stressed
automation. Mission profile data and data specific to vehicle
configuration are commonly referred to as I-Loads
(initialization loads). I-Load requirements are provided to the
software organization by NASA on magnetic tape. The tape is
input to a Software Development Laboratory facility which
applies the I-Load data directly to an image of the Shuttle’s
mass memory device, thus minimizing manipulation of the
existing software system, i.e., recompilation and relink-edit.
The automated process also includes extensive verification
and documentation features.

Update of other reconfigurable data, such as formats for
telemetry downlink, parameter limits for fault detection and
annunciation, and specialized crew displays for payload
monitoring and control, have also been automated.
Preprocessors are used to apply data changes supplied by
NASA on requirements tapes. Unlike the I-Load procedure,
update of these data do in some cases involve the recompile of
certain areas of the flight software. These areas, however,
tend to be well defined and of fixed length, thereby
minimizing change to the overall software structure.

Upgrade of Facilities and Test Techniques

The SDL, although an extremely versatile development
tool, cannot, as presently configured, support software
reconfiguration at high flight frequencies. The need for
upgrading the SDL to a Software Production Facility (SPF)
for the operational era was recognized early in the STS
program. Enhancement of both hardware and software has
already begun. The hardware upgrade primarily involves
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more powerful host computers, while software upgrades
consist of the conversion of existing support software and
development of entirely new facilities to complement the
altered flight software modification and test philosophy
dictated by the operational era.

Since enhanced computer resources cannot be expected to
handle alone the vastly increased workload posed by an
operational Shuttle fleet, new support facilities will stress
automation throughout the reconfiguration process. Where
found to be cost-effective, automation will replace current
manual procedurcs, from the preprocessing of incoming data,
through its incorporation into a deliverable software system.

Automation is also a major objective in development of a
test philosophy for the operational era. This objective is
tempered by the realization that, although reconfiguration
only involves ‘‘data,”” these data are part of a complex in-
teractive real-time software system, and is therefore capable
of altering overall Shuttle performance.

In that light, studies are currently in progress which address
verification procedures and management for the operational
era, Shuttle system performance sensitivities to recon-
figuration data, and test selection criteria.

Another concept being proposed as a means of increasing
the responsiveness of the software organization to recon-
figuration is data standardization. This entails placing limits
on the uniqueness of individual missions. An example in-
volves imposing constraints on mission planners, such that
ascent trajectories could only be selected from a standard set
established during an initial series of flights. However,
standardizing and cataloging or grouping sets of recon-
figuration data is an approach that requires the review and
support of the entire STS project. Since extensive resources
are expended in mission planning, benefits from such an
approach could be realized in almost all aspects of the Shuttle
program.

Conclusions

Early development of the Shuttle primary software em-
phasized several key factors common to the success of any
complex interactive software system. These include: early
involvement in the definition of requirements; standardized
programming techniques; an incremental test approach which
includes both detailed and system level independent verifi-
cation; adequate simulation facilities utilizing operational
hardware; and last and most important, strict configuration
control during all phases of development and testing.
However, operational use of the Shuttle software dictates
more cost-effective methods for software data modification.
Current plans emphasize automated techniques to reconfigure
the software for the varying missions and payloads of the
operational era.
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